Epistemología de la codificación de datos

Authors

  • Mateo Flórez
  • Maria Serje

Keywords:

Codificación, Decodificación, Distancia de Hamming, Corrección de errores, Teoría de códigos, Transmisión de información, pistemología matemática, Estructuración del conocimiento, Integridad de datos

Abstract

This study explores data encoding from an epistemological standpoint, investigating how mathematics
not only structures and validates knowledge but also addresses complex challenges through coding theory.
At the core of this investigation are the processes of encoding, decoding, and the application of Hamming
distance. These key concepts illustrate how coding theory meets practical needs in information transmission
by minimizing errors and ensuring data integrity. From a historical perspective, mathematics has evolved to
solve specific technical problems while simultaneously creating abstract frameworks that can be applied across
disciplines. Error correction within coding theory exemplifies this dual role, where tools designed for reliable
data transmission also contribute to broader theoretical models and applications in areas with complex, uncertain
environments. Thus, encoding emerges not only as a technical solution but also as a method for preserving
and structuring knowledge, offering insights into the ways mathematics extends its utility beyond immediate
applications. This dual perspective emphasizes the unique role of mathematics in crafting resilient structures
for knowledge transfer that support technological advances and enhance theoretical understanding.

References

1. BERLEKAMP, E. R. (1968). Algebraic Coding Theory. McGraw-Hill.

2. BETTEN, A., BRAUN, M., FRIPERTINGER, H., KERBER, A., KOHNERT, A., & WASSERMANN,

A. (2006). Error-correcting linear codes: Classification by isometry and applications (Vol. 18).

Springer Science & Business Media.

3. HAMMING, R. W. (1950). “Error Detecting and Error Correcting Codes”. The Bell System Technical

Journal, 29(2), 147-160.

4. JIMENEZ MATEO, P. (2014). Compresión de datos usando códigos lineales. MACKAY, D. J. C.

(2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press.

5. MACWILLIAMS, F. J., & SLOANE, N. J. A. (1977). The Theory of Error-Correcting Codes. North-

Holland Publishing Company.

6. PODESTÁ, R. A. (2006). Introducción a la teoría de códigos autocorrectores. Mathematics Subject

Clas- sification. CONICET y SecytUNC.

7. SALCEDO QUINTERO, C. A. (2022). Análisis del desempeno de autoencoders para aprender

códigos lineales binarios.

8. SHANNON, C. E. (1948). ”A Mathematical Theory of Communication”. The Bell System Technical

Journal, 27(3), 379-423.

How to Cite

Flórez, M., & Serje, M. (2024). Epistemología de la codificación de datos. Revista MATUA ISSN: 2389-7422, 11(1), 87–100. Retrieved from https://www.revistasuniatlanticoeduco.biteca.online/index.php/MATUA/article/view/4502

Downloads

Download data is not yet available.

Published

2024-12-27

Issue

Section

Artículos