Certain new results on the Khalil conformable fractional derivative
Keywords:
Conformable fractional derivative, Fractional CalculusAbstract
This article establishes certain important results for mathematical analysis, specifically related to conformable derivatives of fractional order, among them the following stand out: the chain rule, the Cauchy mean value theorem and L’Hopital’s rule. These results are expected to stimulate research in this area.
Author Biographies
Miguel Vivas-Cortez, Pontificia Universidad Católica del Ecuador
Pontificia Universidad Católica del Ecuador
Janneth Alexandra Velasco Velasco, Universidad de las Fuerzas Armadas ESPE
Universidad de las Fuerzas Armadas ESPE
Departamento de Ciencias Exactas, Quito, Ecuador.
Jorge Eliecer Hernández Hernández, Universidad Centroccidental Lisandro Alvarado
Decanato de Ciencias Económicas y Empresariales
Departamento de Técnicas Cuantitativas, Barquisimeto, Venezuela
References
[1] Atangana, A. Derivative with a New Parameter Theory, Methods and Applications. Academic Press: New York, NY, USA, 2016
[2] Gorenflo R. and Mainardi F., Fractional Calculus: Integral and Differential Equations of Fractional Order, in CISM Courses and Lect. 378, Springer, Vienna , 223aˆ276, (1997)
[3] Guzman P., Lugo L., Na ́poles Valdez J. E., Vivas-Cortez M. On a New Generalized Integral Operator and Certain Operating Properties. Axioms. 9(2), 1 – 14
[4] R.Khalil,M.AlHorani,A.Youseff,M.Sababheh.Anewdefinitionoffractionalderivative,J.Compu- tational and Applied Mathematics. 264, 65 – 70, (2014)
[5] S. Miller , B. Ross B. An introduction to the Fractional Calculus and Fractional Diferential Equations, John Wiley & Sons, USA, (1993)
[2] Gorenflo R. and Mainardi F., Fractional Calculus: Integral and Differential Equations of Fractional Order, in CISM Courses and Lect. 378, Springer, Vienna , 223aˆ276, (1997)
[3] Guzman P., Lugo L., Na ́poles Valdez J. E., Vivas-Cortez M. On a New Generalized Integral Operator and Certain Operating Properties. Axioms. 9(2), 1 – 14
[4] R.Khalil,M.AlHorani,A.Youseff,M.Sababheh.Anewdefinitionoffractionalderivative,J.Compu- tational and Applied Mathematics. 264, 65 – 70, (2014)
[5] S. Miller , B. Ross B. An introduction to the Fractional Calculus and Fractional Diferential Equations, John Wiley & Sons, USA, (1993)
How to Cite
Vivas-Cortez, M. ., Velasco Velasco, J. A. ., & Hernández Hernández, J. E. . (2020). Certain new results on the Khalil conformable fractional derivative. Revista MATUA ISSN: 2389-7422, 7(1), 44–51. Retrieved from https://www.revistasuniatlanticoeduco.biteca.online/index.php/MATUA/article/view/2776
Downloads
Download data is not yet available.