Theorem of the real numerical value of a polynomial according to the derivatives of higher order

Authors

  • Brandon Smith Martinez Costa. Universidad de Pamplona-Colombia

Keywords:

Real numerical value, derived from higher order, mathematical equality, geometry, perimeter.

Abstract

In this paper, we will test the real numerical value of a polynomial
function of the form $y=f(x)$ of degree $n$; by the expression:
$f(x)=\frac{d^n y}{dx^n}$ such that, $x\in\mathbb{R}$ for all $x$
positive and negative. In the present work, the applications of
the real numerical value to simple measurements of the geometry are
studied, making use of the derivatives of higher order.\\

References

Hernando L. Leal, differential calculus in a real variable,

Universidad Popular de Cesar-UPC, 2008.

J. Stewart, calculus of one variable. Transcendent early,

aEd. Mexico: CENGAGE Learning, 2012.

Purcell, Edwin J.; Varberg, Dale; Rigdon, Steven E, c'{a}lculo.

Pearson Educaci'{o}n, M'{e}xico, 2007. Disponible en:

$https://bibliotecavirtualmatematicasunicaes.files.wordpress.com$

$/2011/11/cc3a1lculo_edwin-purcell-9na-edicic3b3n.pdf$

How to Cite

Martinez Costa., B. S. (2018). Theorem of the real numerical value of a polynomial according to the derivatives of higher order. Revista MATUA ISSN: 2389-7422, 5(1). Retrieved from https://www.revistasuniatlanticoeduco.biteca.online/index.php/MATUA/article/view/2020

Downloads

Download data is not yet available.

Downloads

Published

2018-07-04

Issue

Section

Artículos