About a property equivalent to Ap weight condition for the Hardy-Littlewood maximal operator

Authors

  • Alvaro Corvalán Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento

Keywords:

Operador Maximal de Hardy-Littlewood clases Ap funciones de pesos

Abstract

The inequality Mf (x)p C Mw (j f jp) (x), for a weight function w, is a consequence of the weak type (p; p) for the Hardy-Littlewood maximal operator from Lp (w). A recent result shows that the inequality also implies the weak type
(p; p) so, in fact, both conditions are equivalent. Here we give a new an elementary proof of the equivalence that, unlike existing demonstrations, it requires no covering properties.

References

Muckenhoupt, Benjamin, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972) 207–226.

Lerner, Andrei K.; Ombrosi, Sheldy. A Boundedness Criterion for General Maximal Operators. Publ. Mat. 54 (2010), no. 1, 53–71.

Coifman, R., and Feerman, C.. Weighted norm inequalities for maximal functions and singular integrals, Studia Mathematica, 51.3 (1974): 241-250.

Rudin, W. Real and Complex Analysis, 3rd ed. McGraw-Hill, Inc. NY,USA, 1987.

García-Cuerva, J. and Rubio de Francia, J.L.Weighted Norm Inequalities and Related Topics, Elsevier, 1985.

Marcinkiewicz, J. Sur l´ interpolation d´ opérations, C. R. Acad. Sci. Paris 208 (1939).

Zygmund, A. On a Theorem of Marcinkiewicz concerning interpolation of operations, J. Math Pures. Appl. 34 (1956).

Benett, C. and Sharpley, R. Interpolation of Operators, Academic Press, NY, USA, 1988.

Duoandikoetxea Zuazo, F. J., Fourier Analysis, Graduate Studies in Mathematics, Vol. 29, AMS, 2001

Stein, E. Note on the class L log L, Studia Math. 32 (1969).

How to Cite

Corvalán, A. (2016). About a property equivalent to Ap weight condition for the Hardy-Littlewood maximal operator. Revista MATUA ISSN: 2389-7422, 3(1). Retrieved from https://www.revistasuniatlanticoeduco.biteca.online/index.php/MATUA/article/view/1510

Downloads

Download data is not yet available.

Published

2016-07-01