Positive and negative spectral projections are maps of class $C^{\infty}$

Authors

  • Jeovanny de Jesus MUENTES ACEVEDO

Keywords:

Spectral theory, complexification of linear operators, negative and positive, spectral subspaces, orthogonal projection, Cauchy’s integral formula.

Abstract

Let H be a real or complex Hilbert space. We denote by GlS(H) the set consisting of self-adjoint bounded isomorphism. If L 2 GlS(H), then there exist a L-invariant splitting H = H+(L) H?(L); such that L is positive on H+(L) and negative on H?(L). The main goal of this work is to give an elementary prove of that P?; P+ : GlS(H) ! LS(H), where P?(L) and P+(L) are the orthogonal projections onto H?(L) and H+(L) respectively, can be expressed as
P?(L) = ? 1 2i Z ? (L ? I)?1d and P+(L) = I + 1 2i Z ? (L ? I)?1d;

where ? is a closed path containing the negative spectrum of L in its interior. Using this representation, we will
see that P? and P+ are C1-maps.

References

Abraham R. and Marsden J. Foundations of Mechanics. Second edition. Addison-Wesley Publishing Company, Inc. 1978.

Fabian M., Habala P., Hájek P., Montesinos V., Pelant J. and Zizler V., Functional Analysis and Infinite- Dimensional Geometry. CMS Books in Mathematics, Springer-Verlag, New York, 2001.

Kato T., Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, Vol. 132, Springer-Verlag, New York/Berlin, 1980.

Muentes J., O fluxo espectral de caminhos de operadores de Fredholm auto-adjuntos em espa¸cos de Hilbert. Diss. Universidade de Sao Paulo, 2013.

Muentes J., “On the continuity of the map square root of nonnegative isomorphisms in Hilbert spaces”, Revista Integraci´on, Vol. 33, No. 1, 2015, pág. 11-26.

Muentes J., “The map positive square root of positive isomorphisms is a C1-diffeomorphism”.

Muñoz, Gustavo A., Yannis Sarantopoulos, and Andrew Tonge. C¸ omplexifications of real Banach spaces, apolynomials and multilinear maps.”Studia Math 134.1 (1999): 1-33.

Musso, Monica, Jacobo Pejsachowicz, and Alessandro Portaluri. .A Morse Index Theorem and bifurcation for perturbed geodesics on Semi-Riemannian Manifolds..arXiv preprint math/0311147 (2003).

P. M. Fitzpatrick, J. Pejsachowicz and L. Recht, “Spectral flow and Bifurcation of Critical Points of Strongly-Indefinite Functionals Part I”. General Theory, Journal of Functional Analysis 162 (1999), 52-95,

Academic Press.

Schechter M., Principles of Functional Analysis, Second Edition, Graduate Studies in Mathematics, Vol. 36. American Mathematics Society, Providence, Rhode Island, 2002.

How to Cite

MUENTES ACEVEDO, J. de J. (2015). Positive and negative spectral projections are maps of class $C^{\infty}$. Revista MATUA ISSN: 2389-7422, 2(2). Retrieved from https://www.revistasuniatlanticoeduco.biteca.online/index.php/MATUA/article/view/1412

Downloads

Download data is not yet available.

Published

2015-12-31