A note on negative order Bernoulli, Euler and Genocchi polynomials

Authors

  • William RAMIREZ
  • Julio ROMERO Universidad del Atlántico
  • Alejandro URIELES G. Universidad del Atlántico

Keywords:

Genocchi polynomials, Genocchi number, summation formula, negative order Bernolli Euler and Genocchi.

Abstract

Let n be a integer non-negative and let be B(?) n , E(?) n and G(?) n the negative order Bernoulli, Euler and Genocchi polynomials. In the present paper we study Some properties of these polynomials and prove some properties Genocchi polynomials

References

Abramowitz, M, Stegun, I: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. McGraw-Hill, USA. (1960).

Chen, S, Cai, Y, Luo, Q: .An extension of generalized Apostol-Euler polynomials”. 2013:61, Chen et al. Advances in Difference Equations (2013).

Horadam, A. F.: ”Negative order Genocchi polynomials”. Universsity of new England, Armidale, Australia (2003).

Kurt, B: .A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials B2n (x; y)”. Appl. Math. 233, 3005-3017 (2010).

Sándor J., Crstici B.: ”Handbook of Number Theory II”, Kluwer Boston U.S.A. (2004).

Srivastava, HM, Todorov, PG: .An Explicit Formula for the Generalized Bernoulli Polynomials”, J. Mat. Anl. Appl. 130, 509-513 (1988).

How to Cite

RAMIREZ, W., ROMERO, J., & URIELES G., A. (2015). A note on negative order Bernoulli, Euler and Genocchi polynomials. Revista MATUA ISSN: 2389-7422, 2(1). Retrieved from https://www.revistasuniatlanticoeduco.biteca.online/index.php/MATUA/article/view/1350

Downloads

Download data is not yet available.

Published

2015-07-30