Sistemas Polinomiales Cuadráticos con un Punto Crítico Degenerado

Autores/as

  • María SERJE ARIAS
  • Angélica ARROYO CABRERA Universidad Autónoma del Caribe
  • Jorge RODRIGUEZ CABRERA Universidad del Atlántico

Palabras clave:

Sistemas Polinomiales Cuadráticos, Puntos Críticos No Hiperbólicos, Punto Crítico Degenerado, Análisis Cualitativo, Retratos de fase de sistemas polinomiales.

Resumen

En este artículo se presenta un Análisis cualitativo de los sistemas cuadráticos que poseen un punto crítico degenerado, para ello primero se identifican y clasifican a los sistemas cuadráticos con un punto crítico degenerado y de este modo facilitar su estudio y luego se grafican los retratos de fase que resulten del análisis cualitativo de estos sistemas .Para realizar este estudio de los sistemas cuadráticos de ecuaciones diferenciales fue necesario utilizar algunos resultados importantes sobre la teoría  de los Sistemas no Lineales, por esta razón se incluyeron algunas definiciones y teoremas que fueron vitales durante el estudio, ya que determinan los pasos a seguir para el análisis cualitativo de cualquier sistema no lineal.

 

Referencias bibliográficas

Grassman, J. 1987, Asymtotic Methods for Relaxation Oscillations and Applications ( New York: Springer Verlag).

Guckeinheimer, J., y Holmes, P. 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields ( New York: Springer Verlag).

Hagedorn, P. 1982, Nonlinear Oscillations ( Oxford: Clarendon Press).

Perko,L. 2001, Differential Equations and Dynamical Systems (New York: Springer Verlag).

Dumortier, F., Llibre, J., y Artés, J. 2006, Qualitative Theory of PLanar Differential Systems (Berlin: Springer Verlag).

Cómo citar

SERJE ARIAS, M., ARROYO CABRERA, A., & RODRIGUEZ CABRERA, J. (2015). Sistemas Polinomiales Cuadráticos con un Punto Crítico Degenerado. Revista MATUA , 2(2). Recuperado a partir de https://www.revistasuniatlanticoeduco.biteca.online/index.php/MATUA/article/view/1410

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2015-12-31